185 research outputs found

    Human factors consideration in the interaction process with virtual environment

    Get PDF
    Newrequirements are needed by industry for computer aided design (CAD) data. Some techniques of CAD data management and the computer power unit capabilities enable an extraction of a virtual mock-up for an interactive use. CAD data may also be distributed and shared by different designers in various parts of the world (in the same company and with subcontractors). The use of digital mock-up is not limited to the mechanical design of the product but is dedicated to a maximum number of trades in industry. One of the main issues is to enable the evaluation of the product without any physical representation of the product but based on its virtual representation. In that objective, most of main actors in industry domain use virtual reality technologies. These technologies consist basically in enabling the designer to perceive the product in design process. This perception has to be rendered to guarantee that the evaluation process is done as in a real condition. The perception is the fruit of alchemy between the user and the VR technologies. Thus, in the experiment design, the whole system human-VR technology has to be considered

    Human factors consideration in the interaction process with virtual environment

    No full text
    International audienceNew requirements are needed by industry for computer aided design (CAD) data. Some techniques of CAD data management and the computer power unit capabilities enable an extraction of a virtual mock-up for an interactive use. CAD data may also be distributed and shared by different designers in various parts of the world (in the same company and with subcontractors). The use of digital mock-up is not limited to the mechanical design of the product but is dedicated to a maximum number of trades in industry. One of the main issues is to enable the evaluation of the product without any physical representation of the product but based on its virtual representation. In that objective, most of main actors in industry domain use virtual reality technologies. These technologies consist basically in enabling the designer to perceive the product in design process. This perception has to be rendered to guarantee that the evaluation process is done as in a real condition. The perception is the fruit of alchemy between the user and the VR technologies. Thus, in the experiment design, the whole system human-VR technology has to be considered

    The contribution of closed loop tracking control of motion platform on laterally induced postural instability of the drivers at SAAM dynamic simulator

    Get PDF
    This paper explains the effect of a motion platform closed loop control comparing to the static condition for driving simulators on postural instability. The postural instabilities of the participants (N=18, 15 male and 3 female subjects) were measured as lateral displacements of subject body centre of pressure (YCP ) just before and after each driving session via a balance platform. After having completed the experiments, the two-tailed Mann-Whitney U test was applied to analyze the objective data for merely the post-exposure cases. The objective data analysis revealed that the YCP for the dynamic case indicated a significant lower value than the static situation (U(18), p < 0,0001). It can be concluded that the closed loop tracking control of the hexapod platform of the driving simulator (dynamic platform condition) decreased significantly the lateral postural stability compared to the static operation condition. However the two-tailed Mann-Whitney U test showed that no significant difference was obtained between the two conditions in terms of psychophysical perception

    Vibrations in dynamic driving simulator: Study and implementation

    Get PDF
    This paper shows the effect of adding vibrations in a car cabin during driving simulation on driver perception. Actually, current dynamic driving simulators induce the simulator sickness and it still difficult for the driver to project himself in the virtual reality due to a lack of perception. To know the effect of vibrations on a subject, the effect of the whole body vibration must be defined, as the sources of vibration in a car cabin. After determining all the parameters we propose to determine a formula to produce the vibrations in function of the car state, the road and the boundary conditions. Then experimentation with nine subjects is done to define the exact effect of the vibrations and the new perception of the road in the simulation. In order to do these experimentations, three actuators were installed inside the cabin of the car driving simulator from Institut Image – Arts et Metiers ParisTech

    A predictive approach for a real-time remote visualization of large meshes

    Get PDF
    DĂ©jĂ  sur HALRemote access to large meshes is the subject of studies since several years. We propose in this paper a contribution to the problem of remote mesh viewing. We work on triangular meshes. After a study of existing methods of remote viewing, we propose a visualization approach based on a client-server architecture, in which almost all operations are performed on the server. Our approach includes three main steps: a first step of partitioning the original mesh, generating several fragments of the original mesh that can be supported by the supposed smaller Transfer Control Protocol (TCP) window size of the network, a second step called pre-simplification of the mesh partitioned, generating simplified models of fragments at different levels of detail, which aims to accelerate the visualization process when a client(that we also call remote user) requests a visualization of a specific area of interest, the final step involves the actual visualization of an area which interest the client, the latter having the possibility to visualize more accurately the area of interest, and less accurately the areas out of context. In this step, the reconstruction of the object taking into account the connectivity of fragments before simplifying a fragment is necessary.Pestiv-3D projec

    Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator

    Get PDF
    This paper deals with driving simulation and in particular with the important issue of motion sickness. The paper proposes a methodology to evaluate the objective illness rating metrics deduced from the motion sickness dose value and questionnaires for both a static simulator and a dynamic simulator. Accelerations of the vestibular cues (head movements) of the subjects were recorded with and without motion platform activation. In order to compare user experiences in both cases, the head-dynamics-related illness ratings were computed from the obtained accelerations and the motion sickness dose values. For the subjective analysis, the principal component analysis method was used to determine the conflict between the subjective assessment in the static condition and that in the dynamic condition. The principal component analysis method used for the subjective evaluation showed a consistent difference between the answers given in the sickness questionnaire for the static platform case from those for the dynamic platform case. The two-tailed Mann–Whitney U test shows the significance in the differences between the self-reports to the individual questions. According to the two-tailed Mann–Whitney U test, experiencing nausea (p = 0.019 < 0.05) and dizziness (p = 0.018 < 0.05) decreased significantly from the static case to the dynamic case. Also, eye strain (p = 0.047 < 0.05) and tiredness (p = 0.047 < 0.05) were reduced significantly from the static case to the dynamic case. For the perception fidelity analysis, the Pearson correlation with a confidence interval of 95% was used to study the correlations of each question with the x illness rating component IRx, the y illness rating component IRy, the z illness rating component IRz and the compound illness rating IRtot. The results showed that the longitudinal head dynamics were the main element that induced discomfort for the static platform, whereas vertical head movements were the main factor to provoke discomfort for the dynamic platform case. Also, for the dynamic platform, lateral vestibular-level dynamics were the major element which caused a feeling of fear

    Multi-user interface for co-located real-time work with digital mock-up: a way to foster collaboration?

    Get PDF
    Nowadays more and more industrial design activities adopt the strategy of Concurrent Engineering (CE), which changes the way to carry out all the activities along the product’s lifecycle from sequential to parallel. Various experts of different activities produce technical data using domain-specific software. To augment the interoperability among the technical data, a Digital Mock-Up (DMU), or a Building Information Model (BIM) in architectural engineering can be used. Through an appropriate Computer–Human Interface (CHI), each expert has his/her own point-of-view (POV) of a specific representation of DMU’s technical data according to an involved domain. When multiple experts work collaboratively in the same place and at the same time, the number of CHIs is also multiplied by the number of experts. Instead of multiple CHIs, therefore, a unique CHI should be developed to support the multiview and multi-interaction collaborative works. Our contributions in this paper are (a) a concept of a CHI system with multi-view and multi-interaction of DMU for multiple users in collaborative design; (b) a state of the art of multi-view and multi-interaction metaphors; (c) an experiment to evaluate a collaborative application using multi-view CHI. The experimental results indicate that, in multi-view CHI working condition, users are more efficient than in the other two working conditions (multiple CHIs and split view CHI). Moreover, in multi-view CHI working condition, the user, who is helping the other, takes less mutual awareness of where the other collaborator works than the other two working conditions.Bourse de thèse de CSC (China Scholarship Council

    Procédé d'affichage d'une vue virtuelle sur un écran d'affichage d'un dispositif d'affichage électronique nomade et de déplacement dans une installation d'environnement virtuel

    Get PDF
    Procédé d'affichage d'une vue virtuelle sur un écran d'affichage d'un dispositif d'affichage électronique nomade (1) tenu par un utilisateur (U) et dans une installation d'environnement virtuel (10) dans laquelle est projetée la vue virtuelle, ledit dispositif d'affichage électronique nomade comprenant un dispositif de détection de la position angulaire du dispositif d'affichage (1) par rapport à un axe sensiblement vertical par rapport au sol passant par le centre de gravité du dispositif d'affichage (1). On règle l'orientation de la vue virtuelle affichée sur l'écran et la distance entre le dispositif d'affichage électronique (1) et un point d'intérêt prédéterminé en fonction de la position angulaire du dispositif d'affichage (1), la vue virtuelle projetée dans l'installation (10) étant mise à jour en fonction de la position de l'utilisateur (U) affichée sur l'écran d'affichage du dispositif électronique nomade (1)

    Lateral control assistance and driver behavior in emergency situations

    Get PDF
    Advanced Driver Assistance Systems (ADAS) are designed to help drivers improve driving safety. However, automation modifying the way drivers interact with their vehicle, it is important to avoid negative safety impacts. In particular, the change in drivers’ behavior introduced by ADAS in situations they are not designed for, should be carefully examined. We carried out an experiment on a driving simulator to study drivers’ reaction in an obstacle avoidance situation, when using a lateral control assistance system. A detailed analysis of the avoidance maneuver is presented. Results show that assisted and non-assisted drivers equally succeeded in avoiding the obstacle. However, further analyses tend to show an influence of the assistance system on drivers’ first reaction

    Virtual Distance Estimation in a CAVE

    No full text
    Past studies have shown consistent underestimation of distances in virtual reality, though the exact causes remain unclear. Many virtual distance cues have been investigated, but past work has failed to account for the possible addition of cues from the physical environment. We describe two studies that assess users' performance and strategies when judging horizontal and vertical distances in a CAVE. Results indicate that users attempt to leverage cues from the physical environment when available and, if allowed, use a locomotion interface to move the virtual viewpoint to facilitate this
    • …
    corecore